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Exact cluster size distribution in the one-dimensional Ising model

M. B. Yilmaz and Frank M. Zimmermarin
Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
(Received 30 March 2004; revised manuscript received 3 September 2004; published 28 February 2005

The exact solution for the cluster size distribution in the one-dimensional Ising model is obtained. In the
thermodynamic limit the result is a simple analytical formula which gives the normalized number of clusters of
different sizes. The analytical prediction is compared with Monte Carlo simulations and the energy dependence
of the distribution is studied.
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[. INTRODUCTION The problem of cluster size distribution is of fundamental
interest and has been studied intensively in Ising or similar

! ; . models[10-15. In order to arrive at quantitative predictions,
1925 by Ising[2], the Ising model has been the basis Ofmany of the previous studies have relied on numerical simu-

many theoretical studies to describe cooperative phenomen%ﬂons_ However, the benefit of knowing an exact solution

The Ising model can be described as a collection of i”teraCtbecomes apparent when studying a system’s behavior in the

Ing f‘up” or “down” magnetic spins at fixed Ia_ttlce sites, or vicinity of a critical point, where quantities such as correla-
equivalently, as a lattice gas consisting of lattice sites Wh'd'iion lengths and mean cluster sizes diverge to infinity. In

are either occupieq or unoccupied. Interactions between I""E'uch cases, the required system size for well-converged nu-
tice sites are restricted to nearest neighbors. The exact SOlyzejeq| simulations is expected to also diverge to infinity,
tion in one dimension was provided by Ising and in two,eiher with the computational cost. Here, we provide the

cpmensmns, for the special case of Zero apphled I’m“gmat'ﬁeneral solution for the cluster size distribution in one di-
field, by Onsagef2,3]. However, the one-dimensional prob- mension

lem does not show a phase transition which many scientists
hoped to study in more detail. As a result, more effort has
been made in studying the two- and three-dimensional ver- Il. MODEL
sions of the Ising model than the one-dimensional model.
Yet, the one-dimensional model has proved useful in StUdyaimensionaI lattice gas, which maps onto the one-

mhg S?;gn);ngaé%alh 2?323}8';%6'?acstutrrf;fiefgﬁ]n;i’ er::?godimensional Ising spin model. In this model, we consider a
pnysics, pny . P row of n lattice sites with periodic boundary conditions,

?ér:zirotr;ee-zlrzg?g% Oennasligrrlgilalﬁs T] h?T\]/g daelkgovz;rrliiﬁgcrﬁ Sgltltj:;%?/vhere each site is either occupied or unoccupied. Adjacent
tive model description of one?dimensiongl or ua)tlsi-one-occupi(ad sites interact through the clustering enetgyere,
dimensional hen%mena Manv crvstal surfac?es exhibie occupied cluster consists of a chain of adjacent occupied
one—dimensiorﬁ)al features' such és t?l/e terrace step edges itfes terminated by unoccupied sites on both ends. Unoccu-
vicinal surfaces, or surfe{ce reconstructions featuﬁn ?)neE)?ecj clusters are defined accordingly. We solve the problem

: . . . 9 in the canonical ensemble, i.e., keeping the number of occu-
dimensional chains or rows which can act as one-_. .

: : X . ied sitesn; constant.
dimensional lattice gas systems for adsorption of atoms ana

molecules. For example, the(801)2 X 1 surface consists of First, we review the solution for the total number of oc-
' p'e, cupied clustersg using the maximum term method 6],

long, para]lel rows of Si dlmers .W'th reactive ‘?'ang"’.‘g adapted to periodic boundary conditions. The partition func-
bonds, which serve as adsorption sites. The one-dimension n can be written as

lattice gas model successfully describes the statistical me-
chanics of H atoms adsorbed on thé0Bil) surface[4—7]. n
Single walled carbon nanotubes readily incorporate atoms Q=2 —glgze’E“kBT), (1)
and molecules into their interior, serving as a conduit for q

one-dimensional liquids and interacting gases. Marewal. . .

have used the one-dimensional Ising model to study orienta\’—"hereq is the number of occup|ed clugters, anhndg, are
tional ordering of G, inside single-wall carbon nanotubes the degeneracy factors associated with energy

[8]. A one-dimensional Ising-type model has even led to a
semiquantitative understanding of a process as complex as

Since its first introduction in 1920 by Len4] and in

For definiteness, we cast the problem in terms of the one-

E=-en,-q). (2

DNA denaturizatior{9]. The sum is over all possible values@fThe negative sign in
front of € in EqQ. (2) indicates that the interaction between
occupied sites is attractive for positive The degeneracy

*Corresponding author.  Electronic address: factor g; is the number of ways of arranginy occupied
fmz@physics.rutgers.edu lattice sites intog clusters, given by
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(ng—1)! distinguishable, i.e., all clusters have different lengths. In the
0:= m () periodic system there arepossibilities for choosing the po-
! ' ' sition of the first cluster. Since, by definition, each occupied
Similarly, g, is the number of ways of arranging the unoccu-cluster is placed in between two unoccupied sites, there are
pied lattice sites int@ unoccupied clusters, now ny—1=n-n;—-1 positions for the remaining-1 clus-
ters, giving(ng—1)!/ (ny—q)! possibilities for arranging these
_ (no - 1)' _ 1 I . .
Qo= ——————, (4) g-1 clusters. However, since all clusters of the same size are
(no=q)t(q-1)! indistinguishable, we have to divide by the number of per-

mutations within each cluster group of size~or a given set
of occupied clustergq,}, the number of different arrange-
ments is then

where ng=n-n, is the number of unoccupied lattice sites.
The factor ofn in Eq. (1) represents the number of ways of
arranging these configurations with respect to the lattice.
Last, we correct for overcounting related to the periodic o
boundary conditions. Depending on which of thelusters n(n -3 kg - 1>!
in a given configuration appears “first” with respect to an 1

arbitrary lattice site marker, we can divide the setgfg; O3= ( P ) P . (10

configurations intay subsets, all of which are clearly identi- - (k+ g ' T g
cal. Each configuration was therefore counggémes, which k=1 k=1
is corrected by the factor #j/in Eq. (1).

To solve for the thermal equilibrium valug we use the The partition function can now be simply written as
maximum term method, i.e., the partition function is re-
placed by its largest term, which is exact in the thermody- Q=2 g HkaD, (11
namic limit. Maximizing the summand of Eq1) with re- {a

spect toq and solving the resulting quadratic equation in theWhere the sum is over all sets of clustégg} satisfying Egs.
thermodynamic limit(n— «), the term (7) and (8)

\'n +4non, (e?eT—1)-n T_o determine the number of clusters with lendthwe
(et — 1 (5)  again use the maximum term method. Because the vajues
(e ) are constrained by Eq$7) and (8), we introduce Lagrange
gives the largest contribution to the sum in Ef). Normal- ~ multipliers and take partial derivatives with respectcfo

izing this with respect to the number of sitesthis becomes ~ First, taking the logarithm of the summand of Eg1), we
write

V1+4600, (7T - 1) -1
Z(ee/kBT 1) !

(6)

a= J
a_['” oo - L 20+ (nl > qu)

where a=q/n is the normalized number of clusterg, G k=1
=np/n is the fraction of unoccupied sites, ag=n,/n is the o
fraction of occupied sites. + )\Z(q -> qu>]

To determine the distribution of cluster sizes, we rewrite k=1
the partition function in terms of the cluster size distribution.
We defineq, as the number of occupied clusters with lengthWn€reAs andx, are the Lagrange multipliers corresponding
[, wherel indicates the number of occupied sites within thet© Eas.(7) and (8), respectively. Using the forms given in

cluster. Then each set of occupied clustiggg must satisfy ~£9S-(9) and(10), the above set of equations simplifies to

(12)

the constraints q = §152 (13)
n; = 2 ke (7)  Where
k=1
(N—=N1 =0 em) o
=— " 9K 1, 14
and S (=g - 1) (14)
q=2> G (g and
k=1
$=(n-ny-g)eeDe” (15)
Inserting these two equations into E®), the total energy
for a particular set ofq,} becomes are constants independent lofinserting Eq.(13) into Egs.
- (7) and(8) and solving forS; andS, we obtain
E=- e (k- 1. ©) q
1

We now calculate the degeneracy factor for a given set of
{ai}. Let us first consider the case where all clusters arand
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FIG. 1. Comparison of the number of different size clusters

obtained from a Monte Carlo simulation on 1000 sites and by usin
our exact result, Eq.19). The obtained plots are fai/ (kgT)=2.

FIG. 2. Number of clusters of sizel as a function of the
gclustering interaction energy. Negative energies correspond to re-
pulsion (anticlustering. The plots are obtained for a fraction of
occupied site®);=0.6. The vertical distance between lifesl and

2 | is the number of clusters; with lengthl.

q

= . 1
S - (17)
_ sampled 5< 10° accepted trial moves, following equilibra-
Then, Eq.(13) can be written as tion of a random initial configuration by fGaccepted trial
5 1 moves.
q = Q_(l _ E) ' (18) In Fig. 2, we show how the distribution is affected by the
n, n, interaction energy. The number of single occupied sites

o _ (clusters with length=1) shows a monotonic decrease with
In the thermodynamic limit, the relevant quantity for the oc-increasing clustering attraction because more and more
Cupied cluster size distribution is the normalized cluster SiZQonger clusters are formed at the expense of the 5ing|es_
distribution. Dividing Eq.(18) by the number of sites, we  Clusters with length <(36,-1)/(1-6,) display a similar

reach the final result, behavior. On the other hand, lit>max1,(36;,-1)/(1-6,)],
) 1 the number of clusters first increases with increasing energy
@ = 0‘_( _ﬁ) , (19) but peaks at
21 2

wherel is the cluster sizeg,=n;/n is the fraction of occu- @- =In 46, (2D

pied sites, andv=q/n is the normalized number of clusters

given by Eq.(6). The mean cluster size {§=6,/«, and the  decreasing again thereafter. This result could, e.g., be used

most probable cluster sizg¢ maximizing ¢) is 1=1 for all  for designing a system that maximizes the number of clusters

occupation fractions and temperatures. of a given length. In the figure, the topmost line shows the
Due to the occupied-unoccupied symmetry of the latticenormalized number of clusters given by Eq.(6). In the

gas model, the normalized unoccupied cluster size distribuimit T—0, all curvesa, approach zero as ¢*e" and the

¢ {(|—1)[|+1—(|+3)al]}

tion is given by the equivalent expression mean cluster sizél) diverges a®??s", indicating critical
) 1 behavior at zero temperature.
_a a As an example of a physical system that can be described
A=\ 7e) (20 by such a one-dimensional latti del ider th
o 6o y such a one-dimensional lattice gas model, we consider the

hydrogen covered 8012 X 1 surface. The surface is cov-

where 6,=ny/n is the fraction of unoccupied site¢The ered with parallel rows of silicon dimers, each of which can
number of unoccupied clusters is clearly the same as thee unoccupied ofsingly or doubly occupied by hydrogen
number of occupied clustets) atoms. Most of the adsorbed hydrogen atoms are paired up

In Fig. 1 we show a comparison of the results obtained byon Si dimers due to an attractive pairing interaction of about
using Eqg.(19) and Monte Carlo simulations of the cluster 0.3 eV[19]. These doubly occupied dimers also have a pro-
size distribution for a clustering energy ef (kgT)=2. The  pensity to form one-dimensional clusters along the dimer
Monte Carlo simulations are performed on a one-row[18,20. Both pairing and clustering interactions are im-
dimensional chain of 1000 lattice sites with periodic bound-portant for the understanding of the hydrogen adsorption/
ary conditions. Using the Metropolis schenmi@7], we  desorption process¢s,6,19. Hu et al.[18] have carried out
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FIG. 3. Cluster size distribu-
tion of paired hydrogen atoms ad-
sorbed on one-dimensional dimer
rows of the Sj001) surface. Data
points are experimental values
measured by Hu, Biedermann,
Knoesel, and HeinZ18]. Lines
are the predictions of the lattice
gas model [Eq. (19)] simulta-
neously fit to all data sets using
€/ (kgT) as the only adjustable pa-
rameter. The best fit is obtained
for €/ (kgT)=0.64.

Normalized Number of Clusters o,

Cluster Length ! Cluster Length 1

a careful scanning tunneling microscopy study of the clustetent description of the physical system. However, if the dis-
size distribution for the H/$001) system for ten different crepancies between the experimental distributions and the
hydrogen surface coverages ranging from 0.03 to 0.59 monanodel prediction were purely due to statistical sampling, a
layer. At each coverage a surface area corresponding to ¢hi-squared value close to unity would be expe¢2g]. Our

X 10" dimers was sampled. Because of the absence of agomewnhat larger value of2=8.3 indicates that factors be-
analytical solution of the cluster size distribution derivedyond statistics are likely to be responsible for the small dif-
above, the authors had to resort to comparing the observegdrences between the model fit and the experimental data.
distributions with the results of Monte Carlo simulations. pagsiple factors include the neglect of certain interactions in
Using the exact solution we are now in a position to directlyihe model(such as next-nearest-neighbor interactions, inter-
fit Eq. (19) to the observed cluster size distribution of Ref. 5xtions involving singly occupied dimers, or inter-row inter-

[18] to determine the clustering energy, and to perform a,ciiong, as well as uncertainties in the experimental data due
chi-squared analysis to quantitatively characterize the agregy the inevitable presence of a small number of surface de-
ment between the lattice gas model and the physical systeffu s, Fitting Eq(19) to the experimental data thus allows us
First, we performed mdmdual least-squares f|.ts at egcqo not only accurately determine/(ksT) and to conclude
hydrogen coverage, using only the cluster interactionn,t the one-dimensional lattice gas model is an excellent
¢/ (kgT) as adjustable parameter. F@rin Eq. (19), we used  yascrintion of the physical system, but also to quantify the
the coverage of doubly occupied sites as measured bgtHu quality of agreement.
al. [18], thus ignoring any possible clustering interactions = |, conclusion, we have given the exact solution for the
involving singly occupied sitef21]. This set of fits yields an  ¢jyster size distribution in the one-dimensional Ising model.
average interaction energy=(0.71+0.08kgT. The uncer-  The resulfEq. (19) in conjunction with Eq.(6)] is an ana-
tainty reflects the standard deviation of the mean of ten meggtical formula which, compared to Monte Carlo simulations,
surements. A simultaneous least squares fit to all ten meggffords a much simpler and more accurate means for analyz-

sured cluster size distributions, corresponding to hydrogefhg experimental data and making predictions.
coverages ranging from 0.03 to 0.59 monolayer, yields

e/ (kgT)=0.64. Both of these values are in agreement with
the Monte Carlo study of Het al,, who suggested a value of
(0.8+£0.2kgT. A comparison of the fit to the experimental ~ We are indebted to S. Lou for valuable discussions, and
data measured by Hat al. is given in Fig. 3. The visual gratefully acknowledge funding from the National Science
quality of the fit indicates that the model is indeed an excel+oundation through CAREER Award No. 9733701.
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