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The exact solution for the cluster size distribution in the one-dimensional Ising model is obtained. In the
thermodynamic limit the result is a simple analytical formula which gives the normalized number of clusters of
different sizes. The analytical prediction is compared with Monte Carlo simulations and the energy dependence
of the distribution is studied.
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I. INTRODUCTION

Since its first introduction in 1920 by Lenzf1g and in
1925 by Isingf2g, the Ising model has been the basis of
many theoretical studies to describe cooperative phenomena.
The Ising model can be described as a collection of interact-
ing “up” or “down” magnetic spins at fixed lattice sites, or
equivalently, as a lattice gas consisting of lattice sites which
are either occupied or unoccupied. Interactions between lat-
tice sites are restricted to nearest neighbors. The exact solu-
tion in one dimension was provided by Ising and in two
dimensions, for the special case of zero applied magnetic
field, by Onsagerf2,3g. However, the one-dimensional prob-
lem does not show a phase transition which many scientists
hoped to study in more detail. As a result, more effort has
been made in studying the two- and three-dimensional ver-
sions of the Ising model than the one-dimensional model.
Yet, the one-dimensional model has proved useful in study-
ing many natural phenomena in surface science, nano-
physics, and biophysicsf4–9g. The fact that certain aspects
of the one-dimensional problem have a known exact solution
render the one-dimensional Ising model a particularly attrac-
tive model description of one-dimensional or quasi-one-
dimensional phenomena. Many crystal surfaces exhibit
one-dimensional features, such as the terrace step edges of
vicinal surfaces, or surface reconstructions featuring one-
dimensional chains or rows which can act as one-
dimensional lattice gas systems for adsorption of atoms and
molecules. For example, the Sis001d231 surface consists of
long, parallel rows of Si dimers with reactive dangling
bonds, which serve as adsorption sites. The one-dimensional
lattice gas model successfully describes the statistical me-
chanics of H atoms adsorbed on the Sis001d surfacef4–7g.
Single walled carbon nanotubes readily incorporate atoms
and molecules into their interior, serving as a conduit for
one-dimensional liquids and interacting gases. Maniwaet al.
have used the one-dimensional Ising model to study orienta-
tional ordering of C70 inside single-wall carbon nanotubes
f8g. A one-dimensional Ising-type model has even led to a
semiquantitative understanding of a process as complex as
DNA denaturizationf9g.

The problem of cluster size distribution is of fundamental
interest and has been studied intensively in Ising or similar
modelsf10–15g. In order to arrive at quantitative predictions,
many of the previous studies have relied on numerical simu-
lations. However, the benefit of knowing an exact solution
becomes apparent when studying a system’s behavior in the
vicinity of a critical point, where quantities such as correla-
tion lengths and mean cluster sizes diverge to infinity. In
such cases, the required system size for well-converged nu-
merical simulations is expected to also diverge to infinity,
together with the computational cost. Here, we provide the
general solution for the cluster size distribution in one di-
mension.

II. MODEL

For definiteness, we cast the problem in terms of the one-
dimensional lattice gas, which maps onto the one-
dimensional Ising spin model. In this model, we consider a
row of n lattice sites with periodic boundary conditions,
where each site is either occupied or unoccupied. Adjacent
occupied sites interact through the clustering energye. Here,
an occupied cluster consists of a chain of adjacent occupied
sites terminated by unoccupied sites on both ends. Unoccu-
pied clusters are defined accordingly. We solve the problem
in the canonical ensemble, i.e., keeping the number of occu-
pied sitesn1 constant.

First, we review the solution for the total number of oc-
cupied clustersq using the maximum term methodf16g,
adapted to periodic boundary conditions. The partition func-
tion can be written as

Q = o
q

n

q
g1g2e

−E/skBTd, s1d

whereq is the number of occupied clusters, andg1 andg2 are
the degeneracy factors associated with energy

E = − esn1 − qd. s2d

The sum is over all possible values ofq. The negative sign in
front of e in Eq. s2d indicates that the interaction between
occupied sites is attractive for positivee. The degeneracy
factor g1 is the number of ways of arrangingn1 occupied
lattice sites intoq clusters, given by
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g1 =
sn1 − 1d!

sn1 − qd!sq − 1d!
. s3d

Similarly, g2 is the number of ways of arranging the unoccu-
pied lattice sites intoq unoccupied clusters,

g2 =
sn0 − 1d!

sn0 − qd!sq − 1d!
, s4d

where n0=n−n1 is the number of unoccupied lattice sites.
The factor ofn in Eq. s1d represents the number of ways of
arranging these configurations with respect to the lattice.
Last, we correct for overcounting related to the periodic
boundary conditions. Depending on which of theq clusters
in a given configuration appears “first” with respect to an
arbitrary lattice site marker, we can divide the set ofng0g1
configurations intoq subsets, all of which are clearly identi-
cal. Each configuration was therefore countedq times, which
is corrected by the factor 1/q in Eq. s1d.

To solve for the thermal equilibrium valueq, we use the
maximum term method, i.e., the partition function is re-
placed by its largest term, which is exact in the thermody-
namic limit. Maximizing the summand of Eq.s1d with re-
spect toq and solving the resulting quadratic equation in the
thermodynamic limitsn→`d, the term

q =
În2 + 4n0n1see/kBT − 1d − n

2see/kBT − 1d
s5d

gives the largest contribution to the sum in Eq.s1d. Normal-
izing this with respect to the number of sitesn, this becomes

a =
Î1 + 4u0u1see/kBT − 1d − 1

2see/kBT − 1d
, s6d

where a=q/n is the normalized number of clusters,u0
=n0/n is the fraction of unoccupied sites, andu1=n1/n is the
fraction of occupied sites.

To determine the distribution of cluster sizes, we rewrite
the partition function in terms of the cluster size distribution.
We defineql as the number of occupied clusters with length
l, wherel indicates the number of occupied sites within the
cluster. Then each set of occupied clustershqkj must satisfy
the constraints

n1 = o
k=1

`

kqk s7d

and

q = o
k=1

`

qk. s8d

Inserting these two equations into Eq.s2d, the total energy
for a particular set ofhqkj becomes

E = − eo
k=1

`

sk − 1dqk. s9d

We now calculate the degeneracy factor for a given set of
hqkj. Let us first consider the case where all clusters are

distinguishable, i.e., all clusters have different lengths. In the
periodic system there aren possibilities for choosing the po-
sition of the first cluster. Since, by definition, each occupied
cluster is placed in between two unoccupied sites, there are
now n0−1=n−n1−1 positions for the remainingq−1 clus-
ters, givingsn0−1d! / sn0−qd! possibilities for arranging these
q−1 clusters. However, since all clusters of the same size are
indistinguishable, we have to divide by the number of per-
mutations within each cluster group of sizek. For a given set
of occupied clustershqkj, the number of different arrange-
ments is then

g3 =

nSn − o
k=1

`

kqk − 1D!

Sn − o
k=1

`

sk + 1dqkD!p
k=1

`

qk!

. s10d

The partition function can now be simply written as

Q = o
hqkj

g3e
−E/skBTd, s11d

where the sum is over all sets of clustershqkj satisfying Eqs.
s7d and s8d.

To determine the number of clusters with lengthl we
again use the maximum term method. Because the valuesqk
are constrained by Eqs.s7d and s8d, we introduce Lagrange
multipliers and take partial derivatives with respect toql.
First, taking the logarithm of the summand of Eq.s11d, we
write

]

]ql
Fln g3shqkjd −

Eshqkjd
kBT

+ l1Sn1 − o
k=1

`

kqkD
+ l2Sq − o

k=1

`

kqkDG = 0, s12d

wherel1 andl2 are the Lagrange multipliers corresponding
to Eqs. s7d and s8d, respectively. Using the forms given in
Eqs.s9d and s10d, the above set of equations simplifies to

ql = S1
l S2, s13d

where

S1 =
sn − n1 − qd
sn − n1 − 1d

ee/skBTde−l1, s14d

and

S2 = sn − n1 − qde−e/skBTde−l2 s15d

are constants independent ofl. Inserting Eq.s13d into Eqs.
s7d and s8d and solving forS1 andS2 we obtain

S1 = 1 −
q

n1
, s16d

and
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S2 =
q2

n1 − q
. s17d

Then, Eq.s13d can be written as

ql =
q2

n1
S1 −

q

n1
Dl−1

. s18d

In the thermodynamic limit, the relevant quantity for the oc-
cupied cluster size distribution is the normalized cluster size
distribution. Dividing Eq.s18d by the number of sitesn, we
reach the final result,

al =
a2

u1
S1 −

a

u1
Dl−1

, s19d

where l is the cluster size,u1=n1/n is the fraction of occu-
pied sites, anda=q/n is the normalized number of clusters
given by Eq.s6d. The mean cluster size iskll=u1/a, and the
most probable cluster sizesl maximizing ald is l =1 for all
occupation fractions and temperatures.

Due to the occupied-unoccupied symmetry of the lattice
gas model, the normalized unoccupied cluster size distribu-
tion is given by the equivalent expression

bl =
a2

u0
S1 −

a

u0
Dl−1

, s20d

where u0=n0/n is the fraction of unoccupied sites.sThe
number of unoccupied clusters is clearly the same as the
number of occupied clustersa.d

In Fig. 1 we show a comparison of the results obtained by
using Eq.s19d and Monte Carlo simulations of the cluster
size distribution for a clustering energy ofe / skBTd=2. The
Monte Carlo simulations are performed on a one-
dimensional chain of 1000 lattice sites with periodic bound-
ary conditions. Using the Metropolis schemef17g, we

sampled 53105 accepted trial moves, following equilibra-
tion of a random initial configuration by 104 accepted trial
moves.

In Fig. 2, we show how the distribution is affected by the
interaction energy. The number of single occupied sites
sclusters with lengthl =1d shows a monotonic decrease with
increasing clustering attraction because more and more
longer clusters are formed at the expense of the singles.
Clusters with lengthl ø s3u1−1d / s1−u1d display a similar
behavior. On the other hand, ifl .maxf1,s3u1−1d / s1−u1dg,
the number of clusters first increases with increasing energy
but peaks at

e

kBT
= lnH sl − 1dfl + 1 − sl + 3du1g

4u1
J , s21d

decreasing again thereafter. This result could, e.g., be used
for designing a system that maximizes the number of clusters
of a given length. In the figure, the topmost line shows the
normalized number of clustersa given by Eq.s6d. In the
limit T→0, all curvesal approach zero ase−e/skBTd and the
mean cluster sizekll diverges asee/s2kBTd, indicating critical
behavior at zero temperature.

As an example of a physical system that can be described
by such a one-dimensional lattice gas model, we consider the
hydrogen covered Sis001d231 surface. The surface is cov-
ered with parallel rows of silicon dimers, each of which can
be unoccupied orssingly or doublyd occupied by hydrogen
atoms. Most of the adsorbed hydrogen atoms are paired up
on Si dimers due to an attractive pairing interaction of about
0.3 eV f19g. These doubly occupied dimers also have a pro-
pensity to form one-dimensional clusters along the dimer
row f18,20g. Both pairing and clustering interactions are im-
portant for the understanding of the hydrogen adsorption/
desorption processesf5,6,19g. Hu et al. f18g have carried out

FIG. 1. Comparison of the number of different size clusters
obtained from a Monte Carlo simulation on 1000 sites and by using
our exact result, Eq.s19d. The obtained plots are fore / skBTd=2.

FIG. 2. Number of clusters of sizeøl as a function of the
clustering interaction energy. Negative energies correspond to re-
pulsion santiclusteringd. The plots are obtained for a fraction of
occupied sitesu1=0.6. The vertical distance between linesl −1 and
l is the number of clustersal with length l.
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a careful scanning tunneling microscopy study of the cluster
size distribution for the H/Sis001d system for ten different
hydrogen surface coverages ranging from 0.03 to 0.59 mono-
layer. At each coverage a surface area corresponding to 3
3104 dimers was sampled. Because of the absence of an
analytical solution of the cluster size distribution derived
above, the authors had to resort to comparing the observed
distributions with the results of Monte Carlo simulations.
Using the exact solution we are now in a position to directly
fit Eq. s19d to the observed cluster size distribution of Ref.
f18g to determine the clustering energy, and to perform a
chi-squared analysis to quantitatively characterize the agree-
ment between the lattice gas model and the physical system.

First, we performed individual least-squares fits at each
hydrogen coverage, using only the cluster interaction
e / skBTd as adjustable parameter. Foru1 in Eq. s19d, we used
the coverage of doubly occupied sites as measured by Huet
al. f18g, thus ignoring any possible clustering interactions
involving singly occupied sitesf21g. This set of fits yields an
average interaction energye=s0.71±0.08dkBT. The uncer-
tainty reflects the standard deviation of the mean of ten mea-
surements. A simultaneous least squares fit to all ten mea-
sured cluster size distributions, corresponding to hydrogen
coverages ranging from 0.03 to 0.59 monolayer, yields
e / skBTd=0.64. Both of these values are in agreement with
the Monte Carlo study of Huet al., who suggested a value of
s0.8±0.2dkBT. A comparison of the fit to the experimental
data measured by Huet al. is given in Fig. 3. The visual
quality of the fit indicates that the model is indeed an excel-

lent description of the physical system. However, if the dis-
crepancies between the experimental distributions and the
model prediction were purely due to statistical sampling, a
chi-squared value close to unity would be expectedf22g. Our
somewhat larger value ofx2=8.3 indicates that factors be-
yond statistics are likely to be responsible for the small dif-
ferences between the model fit and the experimental data.
Possible factors include the neglect of certain interactions in
the modelssuch as next-nearest-neighbor interactions, inter-
actions involving singly occupied dimers, or inter-row inter-
actionsd, as well as uncertainties in the experimental data due
to the inevitable presence of a small number of surface de-
fects. Fitting Eq.s19d to the experimental data thus allows us
to not only accurately determinee / skBTd and to conclude
that the one-dimensional lattice gas model is an excellent
description of the physical system, but also to quantify the
quality of agreement.

In conclusion, we have given the exact solution for the
cluster size distribution in the one-dimensional Ising model.
The resultfEq. s19d in conjunction with Eq.s6dg is an ana-
lytical formula which, compared to Monte Carlo simulations,
affords a much simpler and more accurate means for analyz-
ing experimental data and making predictions.
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FIG. 3. Cluster size distribu-
tion of paired hydrogen atoms ad-
sorbed on one-dimensional dimer
rows of the Sis001d surface. Data
points are experimental values
measured by Hu, Biedermann,
Knoesel, and Heinzf18g. Lines
are the predictions of the lattice
gas model fEq. s19dg simulta-
neously fit to all data sets using
e / skBTd as the only adjustable pa-
rameter. The best fit is obtained
for e / skBTd=0.64.
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